TECHNIQUES & MÉTHODES S08

NB: cette fiche reprend les techniques nécessaires minimales; elle ne constitue donc pas un objectif, mais un prérequis!

STRATÉGIES DE DÉMONSTRATION

■■■ Quelques consignes de rédaction

Désormais, on va vous demander de construire pas à pas un raisonnement, vous devez donc accepter de commencer à rédiger votre solution (dans le bon ordre) même lorsque vous ne voyez pas comment conclure! Lorsque vous lisez la question posée, ne vous attachez pas d'abord aux hypothèses mais plutôt à la conclusion : qu'est-ce qu'on vous demande de faire? Comment le faire (définition + méthodes)?

Vous ferez aussi attention à ce que toute variable utilisée soit correctement introduite au préalable et surtout, vous éviterez l'emploi abusif des quantificateurs existentiel et universel. Ce ne sont pas des signes de sténographie!!

■■■ Stratégies générales pour démontrer une assertion

Soit à démontrer une assertion P. Il existe trois méthodes de démonstration possibles :

- ▶ la preuve par déduction
- ▶ la preuve par disjonction de cas
- ▶ la preuve par l'absurde

■■■ Stratégies pour démontrer une implication

Soit à démontrer une implication $P \Rightarrow Q$. Là encore, trois méthodes de démonstration.

- ightharpoonup la preuve directe : «Supposons que P est vraie. Montrons que Q est vraie»
- ▶ la preuve par par contraposée revient à prouver que $Non(Q) \Rightarrow NonP$.
- \blacktriangleright la preuve par l'absurde «Supposons au contraire que P est vraie et Q est fausse. Montrons que l'on aboutit à une contradiction»

■■■ Stratégies pour démontrer une équivalence

Soit à démontrer une équivalence $P \iff Q$. Trois méthodes de démonstration.

- ightharpoonup procéder par double-implication : $P \Rightarrow Q$ et $Q \Rightarrow P$.
- ightharpoonup raisonner par équivalences $P\iff P_1\cdots\iff P_N\iff Q.$
- ▶ la preuve par disjonction de cas : $P \Rightarrow Q$ et $Non P \Rightarrow Non Q$

■■■ Stratégies pour démontrer une propriété universelle, existentielle

Propriété universelle

Pour démontrer $\forall x \in E, P(x),$

- la preuve commence par : «Soit $x \in E$ », **arbitraire**, fixé.
- puis vous montrez que P(x) est vraie.

Remarque : dans le cas particulier où $E = \mathbf{N}$, on peut aussi procéder par récurrence.

Propriété existentielle

Pour démontrer $\exists x \in E$, P(x), on peut essayer de *construire* un élément x qui vérifie P, en résolvant une équation par exemple, mais ce n'est pas toujours facile! Sinon, on déduit souvent cette propriété existentielle d'une autre propriété existentielle du cours par exemple.

Propriété d'existence et d'unicité

Pour démontrer un résultat d'existence et d'unicité $\exists ! x \in E, P(x)$, vous pouvez procéder de deux façons :

- ▶ vous prouvez dans l'ordre que vous préférez
 - Existence à l'aide des méthodes précédentes,
 - Unicité «Soit $(x, x') \in E^2$ tel que P(x) et P(x'). Montrons que x = x'.»
- ▶ par analyse-synthèse
 - Analyse «Supposons qu'il existe $x \in E$ tel que P(x).» Vous prouvez que x est nécessairement égal à un élément x_0 bien déterminé.
 - **Synthèse** Vous vérifiez que x_0 vérifie $P(x_0)$ vraie.